NAG C Library Function Document

nag chi sq goodness of fit test (g08cgc)

1 Purpose

nag_chi_sq_goodness_of_fit_test (g08cgc) computes the test statistic for the χ^2 goodness of fit test for data with a chosen number of class intervals.

2 Specification

3 Description

The χ^2 goodness of fit test performed by nag_chi_sq_goodness_of_fit_test is used to test the null hypothesis that a random sample arises from a specified distribution against the alternative hypothesis that the sample does not arise from the specified distribution.

Given a sample of size n, denoted by x_1, x_2, \ldots, x_n , drawn from a random variable X, and that the data have been grouped into k classes,

$$x \le c_1,$$

 $c_{i-1} < x \le c_i, \quad i = 2, 3, \dots, k-1,$
 $x > c_{i-1}$

then the χ^2 goodness of fit test statistic is defined by:

$$X^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

where O_i is the observed frequency of the ith class, and E_i is the expected frequency of the ith class.

The expected frequencies are computed as

$$E_i = p_i \times n$$
,

where p_i is the probability that X lies in the ith class, that is

$$p_1 = P(X \le c_1),$$

 $p_i = P(c_{i-1} < X \le c_i), \quad i = 2, 3, ..., k-1,$
 $p_k = P(X > c_{k-1}).$

These probabilities are either taken from a common probability distribution or are supplied by the user. The available probability distributions within this routine are:

Normal distribution with mean μ , variance σ^2 ; uniform distribution on the interval [a,b]; exponential distribution with probability density function $pdf = \lambda e^{-\lambda x}$; χ^2 distribution with f degrees of freedom; and gamma distribution with $pdf = \frac{x^{\alpha-1}e^{-x/\beta}}{\Gamma(\alpha)\beta^{\alpha}}$.

[NP3491/6] g08cgc.1

The user must supply the frequencies and classes. Given a set of data and classes the frequencies may be calculated using nag frequency_table (g01aec).

nag_chi_sq_goodness_of_fit_test returns the χ^2 test statistic, X^2 , together with its degrees of freedom and the upper tail probability from the χ^2 distribution associated with the test statistic. Note that the use of the χ^2 distribution as an approximation to the distribution of the test statistic improves as the expected values in each class increase.

4 Parameters

1: **nclass** – Integer

Input

On entry: the number of classes, k, into which the data is divided.

Constraint: $nclass \ge 2$.

2: **ifreq[nclass]** – const Integer

Input

On entry: **ifreq**[i-1] must specify the frequency of the *i*th class, O_i , for $i=1,2,\ldots,k$.

Constraint: **ifreq** $[i-1] \ge 0$, for i = 1, 2, ..., k.

3: **cint[nclass-1]** – const double

Input

On entry: cint[i-1] must specify the upper boundary value for the ith class, for $i=1,2,\ldots,k-1$.

Constraints: cint[0] < cint[1] < ... < cint[nclass-2]. For the exponential, gamma and χ^2 distributions $cint[0] \ge 0.0$.

4: **dist** – Nag_Distributions

Input

On entry: indicates for which distribution the test is to be carried out:

if **dist** = Nag Normal, the Normal distribution is used;

if **dist** = Nag Uniform, the uniform distribution is used;

if **dist** = Nag_Exponential, the exponential distribution is used;

if **dist** = Nag ChiSquare, the χ^2 distribution is used;

if **dist** = Nag Gamma, the gamma distribution is used;

if dist = Nag_UserProb, the user must supply the class probabilities in the array prob.

Constraint: dist = Nag_Normal, Nag_Uniform, Nag_Exponential, Nag_ChiSquare, Nag Gamma or Nag UserProb.

5: par[2] - const double

Input

On entry: par must contain the parameters of the distribution which is being tested. If the user supplies the probabilities (that is, $dist = Nag_UserProb$) the array par is not referenced.

If a Normal distribution is used then par[0] and par[1] must contain the mean, μ , and the variance, σ^2 , respectively.

If a uniform distribution is used then par[0] and par[1] must contain the boundaries a and b respectively.

If an exponential distribution is used then par[0] must contain the parameter λ . par[1] is not used.

If a χ^2 distribution is used then **par**[0] must contain the number of degrees of freedom. **par**[1] is not used.

If a gamma distribution is used par[0] and par[1] must contain the parameters α and β respectively. Constraints:

if $dist = Nag_Normal$, par[1] > 0.0,

g08cgc.2 [NP3491/6]

$$\begin{split} &\text{if dist} = \text{Nag_Uniform, par}[0] < \text{par}[1], \text{par}[0] \leq \text{cint}[0], \\ &\text{par}[1] \geq \text{cint}(\text{nclass}{-}2), \\ &\text{if dist} = \text{Nag_Exponential, par}[0] > 0.0, \\ &\text{if dist} = \text{Nag_ChiSquare, par}[0] > 0.0, \end{split}$$

6: **npest** – Integer

Input

On entry: the number of estimated parameters of the distribution.

if dist = Nag Gamma, par[0], par[1] > 0.0.

Constraint: $0 \le npest < nclass-1$.

7: **prob[nclass]** – const double

Input

On entry: if the user is supplying the probability distribution (that is, $dist = Nag_UserProb$) then prob[i-1] must contain the probability that X lies in the ith class.

If $dist \neq Nag_UserProb$, prob is not referenced.

Constraints: if dist = Nag_UserProb, then prob[i-1] > 0.0, for i = 1, 2, ..., k and $\sum_{i=1}^{k} prob[i-1] = 1.0$

8: **chisq** – double *

Output

On exit: the test statistic, X^2 , for the χ^2 goodness of fit test.

9: **p** – double *

Output

On exit: the upper tail probability from the χ^2 distribution associated with the test statistic, X^2 , and the number of degrees of freedom.

10: **ndf** – Integer *

Output

On exit: contains (nclass-1 - npest), the degrees of freedom associated with the test.

11: **eval[nclass]** – double

Output

On exit: eval[i-1] contains the expected frequency for the ith class, E_i , for $i=1,2,\ldots,k$.

12: **chisqi[nclass]** – double

Output

On exit: **chisqi**[i-1] contains the contribution from the *i*th class to the test statistic, that is $(O_i - E_i)^2 / E_i$, for i = 1, 2, ..., k.

13: **fail** – NagError *

Input/Output

The NAG error parameter (see the Essential Introduction).

5 Error Indicators and Warnings

NE_INT_ARG_LT

On entry, **nclass** must not be less than 2: **nclass** = $\langle value \rangle$.

NE_BAD_PARAM

On entry, parameter dist had an illegal value.

NE_INT_2

```
On entry, \mathbf{npest} = \langle value \rangle, \mathbf{nclass} = \langle value \rangle.
Constraint: 0 \leq \mathbf{npest} < \mathbf{nclass} - 1.
```

[NP3491/6] g08cgc.3

NE INT ARRAY CONS

```
On entry, ifreq[\langle value \rangle] = \langle value \rangle.
Constraint: ifreq[i-1] \geq 0, for i=1,2,\ldots,nclass.
```

NE NOT STRICTLY INCREASING

The sequence **cint** is not strictly increasing **cint**[<value>] = <value>, **cint**[<value>-1] = <value>.

NE REAL ARRAY ELEM CONS

```
On entry cint[0] = \langle value \rangle.
Constraint: cint[0] \geq 0.0, if dist = Nag\_Exponential||Nag\_ChiSquare||Nag\_Gamma.
```

NE_REAL_ARRAY_CONS

```
On entry, prob[<value>] = <value>. Constraint: prob[i-1] > 0, for i = 1, 2, ..., nclass, when dist = Nag\_UserProb.
```

NE_ARRAY_CONS

```
The contents of array prob are not valid. Constraint: Sum of prob[i-1] = 1, for i = 1, 2, ..., nclass when dist = Nag\_UserProb.
```

NE ARRAY INPUT

On entry, the values provided in par are invalid.

NE_G08CG_FREQ

An expected frequency is equal to zero when the observed frequency is not.

NE G08CG CLASS VAL

This is a warning that expected values for certain classes are less than 1.0. This implies that one cannot be confident that the χ^2 distribution is a good approximation to the distribution of the test statistic.

NE_G08CG_CONV

The solution obtained when calculating the probability for a certain class for the gamma or χ^2 distribution did not converge in 600 iterations. The solution may be an adequate approximation.

NE INTERNAL ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

6 Further Comments

The time taken by the routine is dependent both on the distribution chosen and on the number of classes, k

6.1 Accuracy

The computations are believed to be stable.

6.2 References

Conover W J (1980) Practical Nonparametric Statistics Wiley

Kendall M G and Stuart A (1973) The Advanced Theory of Statistics (Volume 2) Griffin (3rd Edition)

Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw-Hill

g08cgc.4 [NP3491/6]

7 See Also

nag_frequency_table (g01aec)

8 Example

The example program applies the χ^2 goodness of fit test to test whether there is evidence to suggest that a sample of 100 observations generated by nag_random_continuous_uniform_ab (g05dac) do not arise from a uniform distribution U(0,1). The class intervals are calculated such that the interval (0,1) is divided into 5 equal classes. The frequencies for each class are calculated using nag_frequency_table (g01aec).

8.1 Program Text

```
/* nag_chi_sq_goodness_of_fit_test (g08cgc) Example Program.
* Copyright 2000 Numerical Algorithms Group.
* Mark 6, 2000.
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg01.h>
#include <nagg05.h>
#include <nagg08.h>
int main (void)
 char cdist[2];
 double chisq, *chisqi=0, *cint=0, *eval=0, p, *par=0, *prob=0, *x=0, xmax;
 double xmin;
 Integer i, iclass, *ifreq=0, init, n, nclass, ndf, npest;
 Integer exit_status=0;
 Nag_Distributions cdist_enum;
 NagError fail;
 Nag_ClassBoundary class_enum;
 INIT_FAIL(fail);
 Vprintf("g08cgc Example Program Results\n");
  /* Skip heading in data file */
 Vscanf("%*[^\n]");
 Vscanf("%ld %ld %s %*[^\n] ", &n, &nclass, cdist);
 if (*cdist == 'U')
   cdist_enum = Nag_Uniform;
 else if (*cdist == 'N')
    cdist_enum = Nag_Normal;
 else if (*cdist == 'G')
   cdist_enum = Nag_Gamma;
 else if (*cdist == 'C')
   cdist_enum = Nag_ChiSquare;
 else if (*cdist == 'E')
   cdist_enum = Nag_Exponential;
 else if (*cdist == 'A')
   cdist_enum = Nag_UserProb;
  else
```

[NP3491/6] g08cgc.5

```
cdist_enum = (Nag_Distributions)-999;
if (!(x = NAG\_ALLOC(n, double))
     || !(cint = NAG_ALLOC(nclass-1, double) )
     || !(par = NAG_ALLOC(2, double))
     || !(ifreq = NAG_ALLOC(nclass, Integer)))
    Vprintf("Allocation failure\n");
    exit_status = -1;
    goto END;
for (i = 1; i \le 2; ++i)
  Vscanf("%lf", &par[i - 1]);
npest = 0;
 /* Generate random numbers from a uniform distribution */
init = 0;
g05cbc(init);
for (i = 0; i < n; i++)
  x[i] = g05dac(par[0], par[1]);
 iclass = 0;
 /* Determine suitable intervals */
if (cdist_enum == Nag_Uniform)
  {
     iclass = 1;
    cint[0] = par[0] + (par[1] - par[0]) / nclass;
    for (i = 2; i <= nclass - 1; ++i)
cint[i - 1] = cint[i - 2] + (par[1] - par[0]) / nclass;
if (iclass == 1)
  class_enum = Nag_ClassBoundaryUser;
  class_enum = Nag_ClassBoundaryComp;
g0laec(n, x, nclass, class_enum, cint, ifreq, &xmin, &xmax, &fail);
if (fail.code != NE NOERROR)
     Vprintf("Error from g01aec.\n%s\n", fail.message);
     return 1;
 if (!(chisqi = NAG_ALLOC(nclass, double))
     || !(eval = NAG_ALLOC(nclass, double))
     || !(prob = NAG_ALLOC(nclass, double)))
    Vprintf("Allocation failure\n");
    exit_status = -1;
    goto END;
g08cgc(nclass, ifreq, cint, cdist_enum, par, npest, prob, &chisq, &p, &ndf,
 eval, chisqi, &fail);
 if (fail.code != NE_NOERROR)
     Vprintf("Error from g08cgc.\n%s\n", fail.message);
     exit_status = 1;
    goto END;
Vprintf("\n");
Vprintf("%s%10.4f\n", "Chi-squared test statistic = ", chisq);
Vprintf("%s%5ld\n", "Degrees of freedom. = ", ndf);
```

g08cgc.6 [NP3491/6]

8.2 Program Data

```
g08cgc Example Program Data.
100 5 U :n nclass cdist
0.0 1.0 :par[0] par[2]
```

8.3 Program Results

```
g08cgc Example Program Results

Chi-squared test statistic = 3.3000

Degrees of freedom. = 4

Significance level = 0.5089

The contributions to the test statistic are :-
1.8000
0.8000
0.2000
0.0500
0.4500
```

[NP3491/6] g08cgc.7 (last)