208 — Nonparametric Statistics g08cgc

NAG C Library Function Document

nag chi_sq_goodness of fit test (g08cgc)

1 Purpose
nag_chi_sq goodness of fit test (g08cgc) computes the test statistic for the x> goodness of fit test for data

with a chosen number of class intervals.

2 Specification

#include <nag.h>
#include <nagg08.h>

void nag_chi_sq goodness_of_fit_test (Integer nclass, const Integer ifreql],
const double cint[], Nag_Distributions dist, const double parl[],
Integer npest, const double prob[], double *chisqg, double *p,
Integer *ndf, double eval[], double chisqgil[], NagError *fail)

3 Description

The x> goodness of fit test performed by nag chi sq goodness of fit test is used to test the null

hypothesis that a random sample arises from a specified distribution against the alternative hypothesis that
the sample does not arise from the specified distribution.

Given a sample of size n, denoted by x1,z,,...,z,, drawn from a random variable X, and that the data
have been grouped into k classes,

x < ¢,
ca<x<g¢, 1=23...,k—1,
T > Cp—1,

then the x> goodness of fit test statistic is defined by:
k 2
0, - E)
X2 — (v 1

where O; is the observed frequency of the ith class, and FE; is the expected frequency of the ith class.
The expected frequencies are computed as
E; =pi xn,
where p; is the probability that X lies in the ith class, that is
p1=P(X <),
pi=Plci1<X<g¢), 1=23,....k—1,
pr = P(X > ¢).

These probabilities are either taken from a common probability distribution or are supplied by the user.
The available probability distributions within this routine are:

Normal distribution with mean y, variance o2;
uniform distribution on the interval [a, b];
exponential distribution with probability density function pdf = Ae™*;

x? distribution with f degrees of fr?edor/n; and
a—1,—x
gamma distribution with pdf = r_°

NGO

[NP3491/6] g08cgc.1

g08cgc NAG C Library Manual

The user must supply the frequencies and classes. Given a set of data and classes the frequencies may be
calculated using nag_frequency_table (gOlaec).

nag_chi sq goodness of fit test returns the x? test statistic, X2, together with its degrees of freedom and
the upper tail probability from the x? distribution associated with the test statistic. Note that the use of the
x? distribution as an approximation to the distribution of the test statistic improves as the expected values
in each class increase.

4 Parameters
L: nclass — Integer Input
On entry: the number of classes, k, into which the data is divided.

Constraint: nclass > 2.

2: ifreq[nclass] — const Integer Input
On entry: ifreq[i — 1] must specify the frequency of the ith class, O;, for i =1,2,... k.
Constraint: ifreq[i — 1] > 0, for i = 1,2,... k.

3; cint[nclass-1] — const double Input
On entry: cint[i — 1] must specify the upper boundary value for the ith class, fori = 1,2,...,k— 1.
Constraints: cint[0] < cint[1] < ... < cint[nclass—2]. For the exponential, gamma and x>
distributions cint[0] > 0.0.

4: dist — Nag_Distributions Input
On entry: indicates for which distribution the test is to be carried out:

if dist = Nag_Normal, the Normal distribution is used;
if dist = Nag_Uniform, the uniform distribution is used;
if dist = Nag_Exponential, the exponential distribution is used;
if dist = Nag_ChiSquare, the x? distribution is used;
if dist = Nag_Gamma, the gamma distribution is used;
if dist = Nag_UserProb, the user must supply the class probabilities in the array prob.
Constraint: dist = Nag_Normal, Nag_Uniform, Nag Exponential, Nag_ChiSquare,
Nag Gamma or Nag_ UserProb.
5: par[2] — const double Input

On entry: par must contain the parameters of the distribution which is being tested. If the user
supplies the probabilities (that is, dist = Nag_UserProb) the array par is not referenced.

If a Normal distribution is used then par[0] and par[1] must contain the mean, u, and the variance,
o, respectively.

If a uniform distribution is used then par[0] and par[l] must contain the boundaries a and b
respectively.

If an exponential distribution is used then par[0] must contain the parameter A\. par[1] is not used.

If a x? distribution is used then par[0] must contain the number of degrees of freedom. par[1] is
not used.

If a gamma distribution is used par[0] and par[1] must contain the parameters o and [respectively.
Constraints:

if dist = Nag_Normal, par[1] > 0.0,

208cgc.2 [NP3491/6]

208 — Nonparametric Statistics g08cgc

11:

5

if dist = Nag_Uniform, par[0] < par[1], par[0] < cint[0],
par[1] > cint(nclass—2),

if dist = Nag_Exponential, par[0] > 0.0,

if dist = Nag_ChiSquare, par[0] > 0.0,

if dist = Nag_Gamma, par[0], par[1] > 0.0.

npest — Integer Input
On entry: the number of estimated parameters of the distribution.

Constraint: 0 < npest < nclass—1.

prob[nclass] — const double Input

On entry: if the user is supplying the probability distribution (that is, dist = Nag_UserProb) then
prob[i — 1] must contain the probability that X lies in the ith class.

If dist # Nag_UserProb, prob is not referenced.

Constraints: if dist Nag UserProb, then prob[i—1] > 0.0, for i=1,2,...,k

and SF | probli — 1] = 1.0
chisq — double * Output
On exit: the test statistic, X?, for the x?> goodness of fit test.

p — double * Output
On exit: the upper tail probability from the x? distribution associated with the test statistic, X2, and
the number of degrees of freedom.

ndf — Integer * Output

On exit: contains (nclass—1 — npest), the degrees of freedom associated with the test.

eval[nclass] — double Output
On exit: eval[i — 1] contains the expected frequency for the ith class, E;, for i =1,2,... k.
chisqi[nclass] — double Output

On exit: chisqi[i — 1] contains the contribution from the ith class to the test statistic, that is
(O; — E)*JE;, fori=1,2,... k

fail — NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

Error Indicators and Warnings

NE_INT_ARG_LT

On entry, nclass must not be less than 2: nclass = <value>.

NE_BAD_PARAM

On entry, parameter dist had an illegal value.

NE_INT 2

On entry, npest = <value>, nclass = <value>.
Constraint: 0 < npest < nclass—1.

[NP3491/6] g08cgc.3

g08cgc NAG C Library Manual

NE_INT_ARRAY_CONS

On entry, ifreq[<value>] = <value>.
Constraint: ifreq[i — 1] > 0, for ¢ = 1,2,... nclass.

NE_NOT_STRICTLY_INCREASING

The sequence cint is not strictly increasing cint[<value>] = <value>, cint[<value>—1] = <value>.

NE_REAL_ARRAY ELEM_CONS

On entry cint[0] = <value>.
Constraint: cint[0] > 0.0, if dist = Nag_Exponential||[Nag_ChiSquare||Nag_Gamma.

NE_REAL_ARRAY_CONS

On entry, prob[<value>] = <value>.
Constraint: prob[i — 1] > 0, for ¢ = 1,2,...,nclass, when dist = Nag_UserProb.

NE_ARRAY_CONS

The contents of array prob are not valid.
Constraint: Sum of prob[i — 1] = 1, for : = 1,2,... nclass when dist = Nag_UserProb.

NE_ARRAY_INPUT

On entry, the values provided in par are invalid.

NE_G08CG_FREQ

An expected frequency is equal to zero when the observed frequency is not.

NE_G08CG_CLASS_VAL

This is a warning that expected values for certain classes are less than 1.0. This implies that one
cannot be confident that the x? distribution is a good approximation to the distribution of the test
statistic.

NE_G08CG_CONV

The solution obtained when calculating the probability for a certain class for the gamma or x?
distribution did not converge in 600 iterations. The solution may be an adequate approximation.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

6 Further Comments

The time taken by the routine is dependent both on the distribution chosen and on the number of classes,

k.

6.1 Accuracy

The computations are believed to be stable.

6.2 References

Conover W J (1980) Practical Nonparametric Statistics Wiley

Kendall M G and Stuart A (1973) The Advanced Theory of Statistics (Volume 2) Griffin (3rd Edition)
Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw-Hill

g08cgc.4 [NP3491/6]

g08 — Nonparametric Statistics g08cgc

7 See Also
nag_frequency table (g0laec)

8 Example

The example program applies the x> goodness of fit test to test whether there is evidence to suggest that a
sample of 100 observations generated by nag random_continuous_uniform_ab (g05dac) do not arise from
a uniform distribution U(0, 1). The class intervals are calculated such that the interval (0,1) is divided into
5 equal classes. The frequencies for each class are calculated using nag_frequency table (gOlaec).

8.1 Program Text

/* nag_chi_sq goodness_of_fit_test (g08cgc) Example Program.
*

* Copyright 2000 Numerical Algorithms Group.
*
* Mark 6, 2000.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg0l.h>
#include <nagg05.h>
#include <nagg08.h>

int main (void)
{
char cdist[2];
double chisqg, *chisqgi=0, *cint=0, *eval=0, p, *par=0, *prob=0, *x=0, xmax;
double xminj;
Integer i, iclass, *ifreqg=0, init, n, nclass, ndf, npest;
Integer exit_status=0;
Nag_Distributions cdist_enum;
NagError fail;
Nag_ClassBoundary class_enum;

INIT_FAIL(fail);
Vprintf ("g08cgc Example Program Results\n");

/* Skip heading in data file */
Vscanf ("s*[*\nl");

Vscanf ("%1d %1d %s %*["\n] ", &n, &nclass, cdist);
u’)

if (*cdist ==
cdist_enum = Nag Uniform;
else if (*cdist == 'N’)
cdist_enum = Nag_Normal;
else if (*cdist == 'G’)
cdist_enum = Nag_Gamma;
else if (*cdist == 'C’)
cdist_enum = Nag_ChiSquare;
else if (*cdist == 'E')
cdist_enum = Nag_Exponential;
else if (*cdist == 'A’)
cdist_enum = Nag UserProb;
else

[NP3491/6] g08cgc.5

g08cgc

cdist_enum
(! (x
I
I
(N

if = NAG_ALLOC (n,
! (cint NAG_ALLOC(nclass-1,
! (par NAG_ALLOC(2, double))
1(

ifreq = NAG_ALLOC(nclass,

double))

Vprintf ("Allocation failure\n");
exit_status -1;
goto END;
}
for (i = 1; i <= 2; ++1i)
Vscanf ("$1f", &par[i - 11]1);
npest = 0;
/*

init =

0;

g05cbc (init) ;

for 0; 1 < n; i++)
g05dac(par[0], par[1]);
0;

(i =
x[1]
iclass
/* Determine suitable intervals */
if (cdist_enum == Nag_Uniform)
{
iclass =
cint[0]
for

1;

par[0]
2;
cint[i - 2]

+

- par[0]
1; ++1)
(par[1]

(par[1]
i <= nclass -
+

(1 =
1]

cint[i -
}

if (iclass

= 1)
class_enum Nag_ClassBoundaryUser;
else

class_enum

Nag_ClassBoundaryComp;

gOlaec(n, x,
if (fail.code
{

nclass, class_enum,
= NE_NOERROR)

cint,

Vprintf ("Error from gOlaec.\n%s\n",
return 1;

if chisqgi =

NAG_ALLOC (nclass,
NAG_ALLOC (nclass,
NAG_ALLOC (nclass,

! (eval
! (prob

(1 (
[
[
Vprintf ("Allocation failure\n");

exit_status -1;
goto END;

¥
g08cgc(nclass,
eval, chisqi,
if (fail.code
{

ifreq,
&fail);
1= NE_NOERROR)

cint, cdist_enum,

Vprintf ("Error from g08cgc.\n%s\n",
exit_status 1;
goto END;

}
Vprintf ("\n") ;
Vprintf ("%$s%10.4f\n",
Vprintf ("%$s%51d\n",

"Chi-squared test
"Degrees of freedom

g08cgc.6

- par[0])

. ’

NAG C Library Manual

(Nag_Distributions)-999;
double))

Integer)))

Generate random numbers from a uniform distribution */

) / nclass;

/ nclass;

ifreq, &xmin, &xmax, &fail);

fail.message) ;

double))
double))
double)))

par, npest, prob, &chisq, &p, &ndf,

fail.message) ;

n

statistic =",

chisq) ;
ndf) ;

[NP3491/6]

g08 — Nonparametric Statistics

Vprintf ("%$s%10.4f\n",
Vprintf ("\n") ;

Vprintf ("ss\n"

for (i =1; 1 <— nclass; ++1i)

Vprintf ("%10.4f\n",

END:

if (x) NAG_FREE (x);

if (cint) NAG_FREE (cint);

if (par) NAG_FREE (par) ;

if (ifreq) NAG_FREE (ifreq);

if (chisgi) NAG_FREE (chisqgi);
if (eval) NAG_FREE (eval);
NAG_FREE (prob) ;
return exit_status;

if (prob)

8.2 Program Data

g08cgc Example Program Data.
100 5 U :n
0.0 1.0

nclass cdist
:par [0] par([2]
8.3 Program Results

g08cgc Example Program Results
Chi-squared test statistic =

Degrees of freedom. =
Significance level

"Significance level =

"The contributions to the test statistic are

chisqgili - 11);

3.3000
4
0.5089

The contributions to the test statistic are :-

1.8000
0.8000
0.2000
0.0500
0.4500

:=");

g08cgc

[NP3491/6]

g08cgc.7 (last)

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

